3.6.23 \(\int \frac {x^3}{(a+b x^4) \sqrt {c+d x^4}} \, dx\)

Optimal. Leaf size=51 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 \sqrt {b} \sqrt {b c-a d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {444, 63, 208} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 \sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

-ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]]/(2*Sqrt[b]*Sqrt[b*c - a*d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{2 d}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 \sqrt {b} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 51, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 \sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

-1/2*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]]/(Sqrt[b]*Sqrt[b*c - a*d])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 61, normalized size = 1.20 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4} \sqrt {a d-b c}}{b c-a d}\right )}{2 \sqrt {b} \sqrt {a d-b c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^3/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

-1/2*ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x^4])/(b*c - a*d)]/(Sqrt[b]*Sqrt[-(b*c) + a*d])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 130, normalized size = 2.55 \begin {gather*} \left [\frac {\log \left (\frac {b d x^{4} + 2 \, b c - a d - 2 \, \sqrt {d x^{4} + c} \sqrt {b^{2} c - a b d}}{b x^{4} + a}\right )}{4 \, \sqrt {b^{2} c - a b d}}, \frac {\sqrt {-b^{2} c + a b d} \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-b^{2} c + a b d}}{b d x^{4} + b c}\right )}{2 \, {\left (b^{2} c - a b d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log((b*d*x^4 + 2*b*c - a*d - 2*sqrt(d*x^4 + c)*sqrt(b^2*c - a*b*d))/(b*x^4 + a))/sqrt(b^2*c - a*b*d), 1/2
*sqrt(-b^2*c + a*b*d)*arctan(sqrt(d*x^4 + c)*sqrt(-b^2*c + a*b*d)/(b*d*x^4 + b*c))/(b^2*c - a*b*d)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 40, normalized size = 0.78 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {d x^{4} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{2 \, \sqrt {-b^{2} c + a b d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="giac")

[Out]

1/2*arctan(sqrt(d*x^4 + c)*b/sqrt(-b^2*c + a*b*d))/sqrt(-b^2*c + a*b*d)

________________________________________________________________________________________

maple [B]  time = 0.21, size = 316, normalized size = 6.20 \begin {gather*} -\frac {\ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, b}-\frac {\ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^4+a)/(d*x^4+c)^(1/2),x)

[Out]

-1/4/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*
((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))-1/
4/b/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^
2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 4.80, size = 40, normalized size = 0.78 \begin {gather*} \frac {\mathrm {atan}\left (\frac {b\,\sqrt {d\,x^4+c}}{\sqrt {a\,b\,d-b^2\,c}}\right )}{2\,\sqrt {a\,b\,d-b^2\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x^4)*(c + d*x^4)^(1/2)),x)

[Out]

atan((b*(c + d*x^4)^(1/2))/(a*b*d - b^2*c)^(1/2))/(2*(a*b*d - b^2*c)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 14.27, size = 37, normalized size = 0.73 \begin {gather*} \frac {\operatorname {atan}{\left (\frac {\sqrt {c + d x^{4}}}{\sqrt {\frac {a d - b c}{b}}} \right )}}{2 b \sqrt {\frac {a d - b c}{b}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**4+a)/(d*x**4+c)**(1/2),x)

[Out]

atan(sqrt(c + d*x**4)/sqrt((a*d - b*c)/b))/(2*b*sqrt((a*d - b*c)/b))

________________________________________________________________________________________